INEN 220
Introduction to Production and Manufacturing Systems

Overview

• History of Manufacturing
• Manufacturing Systems Introduction
 – Design and Operation Issues
 – Performance Measures
• Manufacturing Engineering Organization
• Manufacturing Engineering Management

What Is Manufacturing?

• Varying definitions of scope
 – *Our focus is on manufacturing systems*
• Technically complex manufacturing *processes*
 – Machining characteristics, assembly instructions...
 – Necessary to *make the product*
• Technically complex manufacturing system operations and coordination
 – Facility layout, capacity planning, production control...
 – Necessary to *make money* making the product

Why Is Manufacturing Important?

• Only real method of creating wealth
• Shift to service economy is undesirable because manufacturing is *offshored*
 – Eliminates direct manufacturing jobs and numerous manufacturing support jobs throughout the economy
• Manufacturing competition has increased
 – Japan, Europe, and Pacific Rim

Why Is Manufacturing Hard?

• Customer demands have increased
 – Traditional: “The customer can have any color as long as it’s black.” - Henry Ford
 – Modern: Customers expect large product variety, reasonable price, superior quality, comprehensive service, and responsive delivery
• Can’t depend on strength of the group
 – *Success of each individual firm is fundamentally determined by the effectiveness of its management to adapt to the new globally competitive environment*
Evolution of Manufacturing

- Completely custom - craftsman (pre 1800)
- English system (1800s)
 - Introduction of general purpose machines that could be used for a variety of products.
- American system (1850s)
 - Emphasized precision and interchangeability. Changed from a "best fit" to a "greatest clearance without loss of functionality" focus.
- Scientific management (1900s)
 - Prespecified worker motions - Moved the control totally into the hands of management.

- Process improvement (SPC) (1950s)
 - The identical procedure will produce different results on the same machine at different times. It emphasized outliers rather than mean performance.
- Numerical control (1970s)
 - Combining the versatility of general purpose machines with the precision and control of special-purpose machines.
- Computer integrated manufacturing (1980s)
- Logistics/Supply-chain management (1990s)

History of Manufacturing

- Fundamental premise
 - Make what people want better and cheaper than anybody else
 - But the times have changed
- 1st industrial revolution
 - Vertical integration
 - Move away from individual craftsmen to centralized production with all aspects performed in a common location
 - Interchangeable parts
 - Allowed manufacture of complex multi-part products on a large scale
 - Created an emphasis on mass production
 - Reduced need for workers with specialized skills
 - Specialization in machines instead of people
 - Workers were "interchangeable"
 - Contributed to rocky history of labor relations
 - Required coordination of mass production with mass distribution system to facilitate the flow of materials and goods through the economy
- 2nd industrial revolution with innovations in transportation and communication

Industrial Advances

- Railroads
 - Hierarchy of management
- Mass retailers
 - Accurate cost accounting information
- Steel business
 - Increased scale and efficient flow
- Auto assembly line
 - High speed, mass production of complex, mechanical products
- Large integrated business enterprises created need for more sophisticated managerial control techniques
 - Taylor scientific management
 - Systematic examination of work procedures
 - Measurement
 - Improvement
 - Shift from economies of scale to economies of scope
 - Using resources across multiple products
Industrial Advances

- Large, integrated business enterprises
 - Shift from technical efficiency to more complex human relations orientation
- Hawthorne studies

American Manufacturing

- Recent decline attributed to
 - Complacency - not continually improving
 - Conservative
 - Not innovative or willing to pursue high-risk ventures
 - Xerox copiers
 - Focus on short-term profits versus long-term benefits
 - Discourages innovation and capital improvements
 - Financial portfolio approach
 - Minimize risk by diversification
 - Lost focus on core competencies

INEN 220

Our View of Manufacturing

Manufacturing Systems

- Design
 - Long term activities of determining the resources and their configuration to support the organization’s objectives
- Planning
 - Medium term decision making to determine the activities, and their order, that the organization should carry out to achieve its objectives

Little “m” Manufacturing

- Direct Production
 - Often referred to as “value added” operations
 - Cutting, shaping, grinding
 - Assembly
 - Necessary but not sufficient for effective manufacturing operations

Manufacturing Systems

- Operation
 - Short term detailed implementation of the planning decisions
- Control
 - Real-time execution of the operating instructions on the manufacturing shop floor
Big “M” Manufacturing

- High-level systems orientation
 - Strategic planning
 - Product design, process development
 - Plant design, capacity management
 - Plant scheduling, quality control, equipment maintenance, workforce organization
 - Product distribution, supply chain management, interplant coordination
 - Direct production

Performance Measures

- Maximize wealth
 - Ultimately, the objective of the manufacturing organization is to continually make money over time
 - How to predict impact of manufacturing engineering decisions on organization’s wealth?
- Dimensions of competition
 - Cost
 - Quality
 - Speed
 - Flexibility

Cost Elements

- Equipment and facility acquisition
- Material
- Labor
- Energy
- Maintenance
- Training
- Overhead (Support functions)
- Cost of capital

Quality Issues

- Product Design
 - Relative to customer expectations
 - Product longevity
 - Ease of maintenance/repair
- Manufacturing
 - Inspection/Rework/Scrap
 - Warranty issues
 - Customer satisfaction/loyalty

Time/Speed Issues

- Cycle time
 - Time to produce a product
- Response time
 - Time to fulfill a customer order
- Time to market
 - Time to develop and introduce new product(s)
- Adaptability
 - Time to respond to changes
 - Customer requirements, external competition, etc.

Flexibility

- Classification or Types
 - Machine flexibility
 - Ease of making changes required to produce a given set of part types
 - Process flexibility
 - Ability to produce a given set of part types in different ways perhaps with different materials
 - Product flexibility
 - Ability to change over to produce new products economically and quickly
Flexibility

Classification (cont.)
- Routing flexibility
 - Ability to handle breakdowns and continue producing a given set of part types
- Volume flexibility
 - Ability to operate profitably at different production volumes
- Expansion flexibility
 - Ability to expand the system easily and in a modular fashion

Flexibility

Classification (cont.)
- Operation flexibility
 - Ability to interchange ordering of several operations for each part type
- Production flexibility
 - Universe of part types that the manufacturing system can produce

Flexibility

- Ability to cope with external change
 - New jobs to be processed
- Ability to cope with internal change
 - Machine breakdowns

Performance Measures

- Relative importance varies among industries and companies
- Dimensions are interdependent and tradeoffs exist
 - Flexibility of the system affects time to respond to changes
 - Increased flexibility levels are usually associated with increased cost
 - Tradeoffs between time to produce and quality of production
- But, customers want it all

Manufacturing System Components

- Manufacturing System Description Model

Basic Manufacturing System

- Processes/Resources
- Facility
- Material flow
- Information
- Support functions
 - Design
 - Planning
 - Operation
 - Control
 - Business
 - Sales, marketing, finance
System Performance Metrics

- Order lead time
- Order throughput
- Order cycle time
- Theoretical cycle time
- Factory/system level work-in-process
- On-time delivery percentage
- Finished product inventory level

Basic Process View

- Process
 - Transforms product in some desirable manner
 - Elements
 - Resources
 - Machine, operator, tools, fixtures, etc.
 - Material
 - Input, output, setup
 - Information
 - Issues
 - Maintenance, setup, operation, coordination

Job/Process Performance Metrics

- Job throughput
- Job cycle time
- Job buffer inventories
- Job processing time
- Equipment utilization/availability
- Operator utilization/availability

Example Process Level Issues

- Economic Order Quantity (EOQ)
 - Determine the “optimum” batch size for the operation
 - Under some restrictive assumptions the inventory profile takes a standard “saw tooth” form

Example Issues (cont.)

- Economic Order Quantity (EOQ)
 - Average annual cost as a function of Q
 - Setup cost, purchase cost, and holding cost
 \[g(Q) = \frac{K}{Q} + \lambda + \frac{Q}{2}, \quad \text{where } \lambda = \frac{Q}{P} \]
 - Find value of Q to minimize total cost, g(Q)
 - Take derivative of g(Q) with respect to Q and set to zero
 \[g'(Q) = \frac{K}{Q^2} - \frac{\lambda}{2} = 0 \]
 \[Q^* = \sqrt{\frac{2PK}{\lambda}} \]

Example Issues (cont.)

- Key Insights of EOQ
 - Tradeoff between batch (lot) size and inventory level
 - Increasing batch size increases the average amount of inventory on-hand, but reduces the frequency of orders
Example Issues (cont.)

- Operator - Machine Interference
 - Design of workstation and methods
 - Sequencing and balancing operator and machine activities
 - One operator — one machine
 - One operator — multiple machines
 - Multiple operators (team) — multiple machines

System Configurations

- Hayes and Wheelwright classification
 - Product, process, volume matrix
 - Job shop
 - Batch manufacturing
 - Flow line
 - Continuous flow

Product - Process Matrix

<table>
<thead>
<tr>
<th>Process Structure</th>
<th>Process Life-cycle Stage</th>
<th>Product Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumbled flow (job shop)</td>
<td>Low volume, low standardization, one of a kind</td>
<td>Low</td>
</tr>
<tr>
<td>Disconnected line flow (batch)</td>
<td>Multiple products, low volume</td>
<td>High</td>
</tr>
<tr>
<td>Connected line flow (assembly line)</td>
<td>Few, major products, higher volume</td>
<td>Medium</td>
</tr>
<tr>
<td>Continuous flow</td>
<td>High volume, high standardization, commodity products</td>
<td>High</td>
</tr>
</tbody>
</table>

Product Volume vs. Product Variety

<table>
<thead>
<tr>
<th>Volume (# parts)</th>
<th>Variety (# part types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Manufacturing System Design

- Facility layout strategies
 - Process layout
 - Group like machines together — job shop
 - Group or family layout
 - Group machines to produce a set of products — cellular mfg.
 - Product or flow line layout
 - Arrange machines by sequence of production — assembly line
 - Fixed layout
 - Product remains in central location and machines are brought to it — airplane, ship building

Issues

- Which strategy to use?
- How to group machines?
- How many machines are needed?
- Where to locate machines?
- What material handling methods are used?
- Where and how big are the inventory storage points?
- How to assign products to machines or groups?