Facility Layout Procedures

- Nadler’s Ideal Systems Approach
 - Theoretical Ideal System
 - “Ultimate” Ideal System
 - Technologically Workable System
 - Recommended System
 - Present System

 Idea is to divorce oneself from the present system and thinking and to work from the top or ideal solution down.

Information Gathering

- Need to answer the following questions:
 - What is to be produced?
 - How are the products to be produced?
 - When are the products to be produced?
 - How much of each product will be produced?
 - For how long will the products be produced?
 - Where are the products to be produced?

- Answers are obtained from:
 - Product design
 - Process design
 - Schedule design

Facility Layout Procedures

- Apple provides a detailed sequence of planning steps that are similar to systematic layout planning discussed below.
- Reed also provides a procedure that relies heavily on the layout planning chart.
- Systematic Layout Planning
 - Developed by Muther
 - Relationship Diagramming
 - A variation of SLP and Apple’s ideas.

Information Gathering

- Product Design
 - Specify the end product in terms of dimensions, material composition, etc.
- Process Design (Planning)
 - Determines how the product will be produced.
- Schedule Design
 - Production planning, Capacity planning
 - Specifies the production quantities and schedules the production equipment.

Systematic Layout Planning

- Procedure developed by Muther and built around the activity relationship chart
 - Understand relationships between activities
 - Build relationship diagram
 - Create space relationship diagram
 - Convert the space relationship diagram into alternative facility layouts
 - Use the procedure to develop a block layout for a facility and to develop detailed layouts for each activity

 This procedure is not a mechanical process. It requires intuition, judgement, and experience. But if applied properly, it does provide a comprehensive layout planning approach.
Product Design

- Determine which products to be produced
 - Typically done by top management based on market research and forecast information
- Detailed design for individual products
 - Aesthetics
 - Function
 - Materials
 - Manufacturing Considerations
- Uncertainty involved in the products to be produced must be considered. Minor changes are inevitable, and major changes are possible. Tradeoff must be made between a flexible system and a system optimized for the current product generation.

Product Design

- Design data for products contained in
 - Photographs of product or prototype
 - Exploded drawings
 - Individual part engineering drawings
 - Parts lists
 - Bills of materials
 - Assembly charts
- Design for automation programs focus on
 - Dimensional reduction in assembly
 - Parts elimination
 - Parts standardization

Make versus Buy Decisions

- Can the item be purchased?
- Can we make the item?
- Is it cheaper for us to make than to buy?
- Is the capital available allowing us to make?

Process Design

- Selecting the required processes
 - Define elemental operations
 - Identify alternative processes for each operation
 - Analyze alternative processes
 - Standardize processes
 - Evaluate alternative processes
 - Select processes
 - Output is usually a route sheet.
- Sequencing the required processes
 - Assembly chart provides this information.
 - Operation process chart is a combination of the assembly chart and the route sheet.
 - Provides an overview of the flow within a facility.
 - Provides a basis for the layout of a facility.

Process Design

- How a product should be produced?
 - Information summarized on
 - Parts list
 - Bills of materials
 - Route sheet
 - Operation process chart
- Who should do the processing?
 - Make versus Buy decisions
 - Determines the scope and magnitude of activities within a facility.
 - Depends on the decision concerning the level of vertical integration.
 - Output is often a parts list or bill of materials

Texas A&M Industrial Engineering
Schedule Design

- How much to produce (lot sizing) and When to produce (production scheduling)
- Information concerning production volumes, trends, and predictability of future demands are needed. (Marketing information)
 - Uncertainty associated with future production demands must be considered when planning the facility.
- Pareto's Law often applies
 - 85% of the production volume is from 15% of the products in the product line.
 - Impacts facility design decisions
 - If it holds, then a mass production area for the 15% and a job shop arrangement for remaining 85%.
 - If it doesn’t hold, then a general job shop arrangement may be required.

Schedule Design

- Must make some aggregate capacity planning decisions.
- Three phase approach:
 - Determine the quantity of components to produce including scrap allowance based on the estimated production requirements for each product.
 - Determine the equipment requirements for each operation.
 - Combine the operation requirements to obtain overall equipment requirements.
- Schedule design is important in determining space requirements.
 - We’ll discuss it more, later, in that context.

PP&S Design

- Recently, more emphasis has been placed on improving communications between the design functions.
 - Concurrent Engineering is the resulting integration of product, process, and schedule design.
 - The thrust of Computer Integrated Manufacturing (CIM) is to provide the information links that will connect all design and operating functions.
 - Computer-aided design (CAD)
 - Computer-aided process planning (CAPP)
 - Computer-aided scheduling (CAS)
 - Computer-aided layout (CAL)
 - Computer-aided logistics systems (CALS)
 - All have been developed as pieces of a CIM system to aid product, process, schedule, and layout designers.