Facilities Planning

- Facilities Location
 - Location of customers, suppliers, and other facilities
- Structural Design
 - Building and services
- Layout Design
 - Equipment, machinery, and furnishing design
- Handling System Design
 - Planning and design of production, support, and distribution systems

Facility Layout

- Developing a facilities layout is a critical step in the facilities planning process.
- Facilities Planner must be CREATIVE and COMPREHENSIVE in generating layout alternatives.

What if centralized WIP storage?

- Handling less is BEST -- Number of times material is handled
 - Not necessarily the handling distance
- Layout or MHS First? -- BOTH
 - Sequential approach that considers a number of alternative handling systems and the corresponding layout alternatives.

- Which comes FIRST, the material handling system or the facilities layout?
- Layout is effected by:
 - Centralized vs. Decentralized Storage of WIP, Tooling, & Supplies
 - Fixed Path vs. Variable Path Handling
 - Unit Load Size
 - Degree of Automation
 - Type and Level of Inventory and Control of Materials

- Layout Types
 - Product layout
 - Group layout
 - Fixed layout
 - Process layout
Layout Applications

- Layout of Specific Functions
 - Manufacturing
 - Receiving and Shipping
 - Storage and Warehousing
 - Office Planning
 - Personnel requirements
 - Make use of traditional layout approaches
 - Often an emotional issue
 - Facility Services
 - Specification of what services are required where
 - Integration of the facility services into the overall facility plan
 - Nonmanufacturing Applications
 - Can adapt traditional techniques to these applications and apply a systematic approach

Transfer Lines

- Series material flow from one workstation to the next
 - Production rate governed by slowest operation
 - High volume applications
 - High level of automation
 - Inventory buffers can be used between workstations to compensate for some variations between workstations
 - Facilities planning for transfer lines is relatively simple
 - Processing equipment is arranged according to processing sequence
 - Typically, straight line or rectangular flow paths are used

Facilities Planning for manufacturing should be a major part of corporate strategic planning.

Emphasis on improved quality, decreased inventories, and increased productivity encourages the design of manufacturing facilities that are integrated, flexible, and controlled.

Flexible Manufacturing Systems

- Network of workstations
 - Accommodates various processing sequences
 - Flexibility achieved by material handling system and general purpose machines
 - Designed for small batch (low to medium volume) and high variety
 - Justified on economies of scope

Components

- Processing equipment
- Material handling equipment
- Computer control equipment

Design requirements for an FMS material handling system:

- Random, independent movement of palletized workparts between workstations. (AGVs, cart-on-track system)
- Temporary storage of workparts.
- Convenient access for loading and unloading.
- Compatible with computer control.
- Provision for future expansion.
- Adherence to all applicable industrial codes.
- Access to machine tools.
- Operation in shop environment.

Classification, Requirements, Layout Type

<table>
<thead>
<tr>
<th>Classification</th>
<th>Requirements</th>
<th>Layout Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Shop</td>
<td>Low Volume / High Variety</td>
<td>Process or group</td>
</tr>
<tr>
<td>Mass Production</td>
<td>High Volume / Low Volume</td>
<td>Product</td>
</tr>
<tr>
<td>Batch Production</td>
<td>Med. Volume / Med. Variety</td>
<td>Any layout type</td>
</tr>
</tbody>
</table>
Flexible Manufacturing System

- Designed for responsiveness to change; therefore, the FMS and the material handling system must be able to adapt to changes in
 - processing technology
 - processing sequences
 - production volumes
 - product sizes
 - product mixes

Modular Design Concepts

- Flexibility achieved by:
 - Modular office equipment
 - Modular workstations
 - Modular material handling equipment
 - General purpose production equipment
 - Expandability of the total system design

Modular Manufacturing System

- Integration of independent production units and modular material handling system.
- Designing modular, expandable systems is very challenging.
- Modular manufacturing system is characterized by
 - Standardized handling and storage components
 - Independent production units
 - Flexible material delivery system
 - Centralized work-in-process storage
 - High degree of control

Modular Facilities

- Use of an interconnecting spine for material transport and movement of people.
- Standard size modules to allow functions to be interchanged if relationships change.
- Expand by extending the spine and adding modules — creates minimal disruption to the existing facility.
- Alternative spine configurations: straight line, "T", or "X".

Modular Design Concepts

- Facility Relayouts can be caused by
 - Changes in the design of an existing product or in the product set to be produced.
 - Changes in the production sequences or in the processing equipment.
 - Changes in the production quantities and schedules, which prompt capacity changes.
 - Changes in organizational structure or management philosophy.
- Changes in requirements for space, equipment, and people.

Modular Material Handling

- Plan flexible, standardized systems for handling, storing, and controlling material within the facility.
 - Build in flexibility.
 - Standardize methods: unit loads, equipment, etc.
 - Integrate into a system as opposed to separate pieces serving only part of the facility.
Handling and Storing Work-In-Process

- Issues
 - Centralized versus decentralized storage
 - Shop floor control and material tracking
 - Reduced WIP inventory levels
 - Controlled material movement to production areas
 - Reduced damage due to handling and storage
 - Automatic encoding of production data
 - "Just-in-time" production
 - Increasing levels of automation: CAE, CAD, CAM, MRP, RTIC, CAPP
 - Rapid tool changing for minimizing setups and reducing lot sizes

Handling and Storing Work-In-Process

- In-process handling includes movement of material, tooling, and supplies to and from production units, as well as handling at the workstation.
- In-process storage includes the storage of material, tooling, and supplies needed to support production. Typically, applies to material in a semifinished state of production.

Handling and Storing WIP

- Processing time versus WIP time
 - Time on Machine
 - Moving and Waiting
 - In cut less than 30%
 - Positioning, loading, gauging, idle, etc.

Handling and Storing WIP

- Rules of Thumb
 - Handling less is best
 - Maintain physical control of materials
 - Eliminate, combine, and simplify
 - Moving and/or storing material incurs costs.
 - Pre-position material

Handling and Storing WIP

- Design requirements for WIP handling system
 - Establish control requirements
 - Determine process flow methods
 - Establish inventory points and levels
 - Consider workplace layout
 - Determine load increment and container design
 - Evaluate WIP storage methods
 - Determine distribution method
 - Design control system

Handling and Storing WIP

- Modular manufacturing and material handling techniques can aid WIP handling and storage.

Conventional Approach

- Neither case is modular -- if processing sequence changes, the facility layout must change.

Poor planning of WIP storage and control may result in these problems:
 - Materials are frequently lost
 - Materials are cannibalized from a different order
 - Large inventory discrepancies exist and are only discovered at audits
 - High material obsolescence costs
 - Crowded, unorganized conditions on manufacturing floor
 - Missed production schedules are the rule rather than the exception
Centralized WIP Storage

- Provides the opportunity to use automated storage and retrieval
- Provides a controlled storage environment
- Can aid in creating modular systems

Material Control

- Types of control
 - Inventory control
 - Shop floor control
 - Quality control
 - Location control
 - Loss control
 - Position control
 - Fiscal control
- Material Tracking / Data Transmission
 - From the material/equipment interface
 - From the material itself
 - Bar Code
 - Optical Character Recognition
 - Magnetic Stripe
 - Smart Tag
 - ROM or PROM

Conclusion

- Depending on volume, variety, and value of products to be processed, different levels of automation, types of layouts, and material handling systems will be appropriate.