Receiving and Shipping

- Consider handling, storing, and control requirements to provide the proper combination of space, equipment, and people.
- Receiving and shipping functions interface with the outside environment.

Facility Requirements

- Receiving
 - Stage and spot carriers
 - Waiting
 - Maneuvering
 - Unloading
 - Dockboards
 - Receiving area
 - Staging area
 - Office area

- Shipping
 - Staging area (may include accumulate and pack)
 - Office area
 - Stage and spot carriers
 - Dockboards

Desirable Attributes

- Directed flow paths (watch out for double handling)
- Continuous flow of effort (try to schedule inbound shipments)
- Concentrated area that minimizes material handling
- Efficient material handling (try to influence unit load configuration)
- Providing safe operations
- Minimizing damage
- Providing good housekeeping

Other Considerations

- Smooth interface between vendor's and receiver's (or shipper's and customer's) information system
- Returnable containers (including attrition and replacement)
- Returned goods
- Returning carriers, i.e., backhaul (maximize utilization of shipper owned carriers)
- Coordination of Receiving and Shipping
 - Common space, equipment, and/or personnel might be used
 - Return of slave pallets for manufacturing
 - Possible centralization of the functions (i.e., receive in the morning and ship in the afternoon)

Space Planning

- What is to be receiving and shipped?
- Number and type of docks
- Space requirements for receiving and shipping area

Receiving and Shipping Analysis Chart
Receiving and Shipping

Docks
- Number
 - Estimate with
 » Queuing analysis
 » Simulation
- Configuration
 - Carrier approaches
 - Carrier traffic flow
 - Carrier waiting area
 - Apron Depth
 - Bay Width

90 degree versus finger docks

Receiving and Shipping

Internal Area Requirements
- Space Allocations For
 - Personnel convenience
 - Offices
 - Material handling equipment maintenance
 - Trash disposal
 - Pallet and packaging material storage
 - Truckers' lounge
 - Buffer or staging area
 - Material handling equipment maneuvering

Receiving and Shipping

Area Requirement Example

Plant

Truck Waiting 24'

Dock Face

Dock Shelter

Dock Levelers
- Portable ramp
- Permanent ramp
- Yard ramp
- Scissor lift
- Bumper pads
- Dock shelters

Receiving and Shipping

Conclusion
- Receiving and shipping are important, but often overlooked, functions.
- They deserve the same systematic planning procedure that is afforded the rest of the manufacturing process.

Storage and Warehousing

- Storage Function
 - Activity of storing raw materials, supplies, and in process material.

- Warehousing Function
 - Activity of storing finished goods.
Storage and Warehousing

• Basic Functions
 – Receiving
 – Identification and sorting
 – Dispatching to storage
 – Placing in storage
 – Storage
 – Removing from storage
 – Order accumulation
 – Packing
 – Shipping
 – Record keeping

• Additional Functions
 – Inbound inspection
 – Parts preparation
 – Kitting
 – Item packaging

Storage and Warehousing

• Goal:
 – Maximize resource utilization while satisfying customer requirements, or
 – Maximize customer service subject to resource constraints

• Resources:
 – Space
 – Equipment
 – Personnel

• Objectives:
 – Maximize space utilization
 – Maximize equipment utilization
 – Maximize labor utilization
 – Maximize accessibility of all materials
 – Maximize protection of all materials

Storage Location Methods

• Randomized Storage
 – An individual stock keeping unit (SKU) can be stored in any available storage location.
 – An inbound load is assigned to the closest available storage location.
 – Retrievals are first-in, first-out (FIFO).

• Dedicated Storage
 – Each SKU is assigned to a specific storage location or set of locations.
 – Storage locations can be arbitrarily determined, such as part number sequence, or they can be determined based on the SKU's activity level and inventory level.
 – Number of storage locations is the sum of the maximum inventory level for each SKU.

• Class Based Storage
 – Hybrid configuration which assigns SKUs to classes based on their activity-to-space ratios, but uses randomized storage within the classes.
 – Yields some of the throughput benefits of dedicated storage and the space benefits of randomized storage.

• Supermarket Storage
 – Combination of random and assigned storage.

Storage Location Methods

• Example

<table>
<thead>
<tr>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>88</td>
<td>1</td>
<td>09</td>
<td>6</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>66</td>
<td>4</td>
<td>96</td>
<td>5</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>08</td>
<td>3</td>
<td>4</td>
<td>48</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>36</td>
<td>2</td>
<td>20</td>
<td>7</td>
<td>24</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>43</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Maximum of aggregate inventory level = 105 pallet loads
Sum of individual maximum inventory levels = 140
Average inventory level = 77.5
Minimum of aggregate inventory level = 51

Space Planning

Storage Analysis Chart

Randomized Storage
– An individual stock keeping unit (SKU) can be stored in any available storage location.
– An inbound load is assigned to the closest available storage location.
– Retrievals are first-in, first-out (FIFO).

Dedicated Storage
– Each SKU is assigned to a specific storage location or set of locations.
– Storage locations can be arbitrarily determined, such as part number sequence, or they can be determined based on the SKU's activity level and inventory level.
– Number of storage locations is the sum of the maximum inventory level for each SKU.

Class Based Storage
– Hybrid configuration which assigns SKUs to classes based on their activity-to-space ratios, but uses randomized storage within the classes.
– Yields some of the throughput benefits of dedicated storage and the space benefits of randomized storage.

Supermarket Storage
– Combination of random and assigned storage.
Storage and Warehousing

• Loss of Cube Utilization
 – Aisle Example

 Main Aisle
 18' Clear Stack Height

 Total Cube = 30,636 cubic feet
 Aisle Cube = 19,620 cubic feet
 Percentage of total volume allocated to aisles = 64%

• Loss of Cube Utilization
 – Honeycombing
 » Wasted space that results because a partial row or stack cannot be utilized because adding materials would result in blocked storage.

• Space Standard
 – Volume requirement per unit load stored to include allocated space for aisles and honeycombing.

Storage and Warehousing

Equipment Planning

• Storage Equipment Types
 – Bulk Storage – includes block and tight-blocking stacking
 – Portable Racks or Stackable Racks
 – Pallet Rack
 – Cantilever Racks – provide long uninterrupted spans
 – Drive-In or Drive-Through Racks
 – Flow-Through Rack
 – Bin Racks or Shelving
 – Sliding Racks

Storage and Warehousing

Layout Planning

• Objectives
 – To utilize space effectively
 – To provide efficient materials handling
 – To minimize storage cost while providing the required levels of service
 – To provide maximum flexibility
 – To provide good housekeeping

• Principles
 – Popularity
 – Similarity
 – Size
 – Characteristics
 – Space Utilization

Storage and Warehousing

• Popularity

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity per Receipt</th>
<th>Trips to Receive</th>
<th>Average Customer Order Size</th>
<th>Trips to Ship</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>800 cartons</td>
<td>200</td>
<td>1.0 cartons</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>300 cartons</td>
<td>300</td>
<td>0.5 cartons</td>
<td>150</td>
</tr>
<tr>
<td>C</td>
<td>500 cartons</td>
<td>250</td>
<td>0.5 cartons</td>
<td>125</td>
</tr>
<tr>
<td>D</td>
<td>200 cartons</td>
<td>100</td>
<td>0.2 cartons</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>100 cartons</td>
<td>10</td>
<td>0.1 cartons</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>500 cartons</td>
<td>250</td>
<td>0.4 cartons</td>
<td>125</td>
</tr>
<tr>
<td>G</td>
<td>1000 cartons</td>
<td>250</td>
<td>0.5 cartons</td>
<td>125</td>
</tr>
<tr>
<td>H</td>
<td>1000 cartons</td>
<td>250</td>
<td>0.4 cartons</td>
<td>125</td>
</tr>
</tbody>
</table>

Storage and Warehousing

• Layout Principles
 – Similarity
 » Items that are received and shipped together should be stored together.
 – Size
 » Provide a variety of storage location sizes to accommodate a variety of products.
 » Utilize adjustable racks or shelves if product and unit load sizes are uncertain or change periodically.
 – Characteristics
 » Perishable materials
 » Oddly shaped items
 » Crushable items
 » Hazardous materials
 » Security of items from pilferage
 » Compatibility between items
Space Utilization

- Conservation of Space
 - Maximizing concentration
 - Maximizing cube utilization
 - Minimizing honeycombing

- Limitations of Space
 - Clear height
 - Stacking height
 - Floor loading
 - Columns

- Materials Accessibility
 - Each storage face has aisle access
 - Majority of items stored along the long axis of the area
 - Aisles should not be placed along walls without doors
 - Avoid locked stock by using a two-bin system

Warehouse Layout Models

- Determine the optimal dedicated storage layout

 - Notation
 - \(q \) = number of storage locations
 - \(n \) = number of products
 - \(m \) = number of I/O points
 - \(S_j \) = number of storage locations required for product \(j \)
 - \(T_j \) = number of trips in/out of storage for product \(j \) (throughput)
 - \(p_j \) = percentage of travel through I/O point \(i \) for product \(j \)
 - \(d_{ik} \) = distance (or time) required to travel from I/O point \(i \) to storage location \(k \)
 - \(x_{jk} \) = 1 if product \(j \) is assigned to storage location \(k \); = 0, otherwise

Warehouse Layout Formulation

- \(f_{jk} \) = expected distance traveled between storage location \(k \) and the docks for product \(j \)

 \[
 f_{jk} = \frac{m}{j=1} p_j d_{ik} x_{jk}
 \]

- Minimize

 \[
 \min \sum_{j=1}^{q} \sum_{k=1}^{S_j} \frac{T_j}{S_j} p_j d_{ik} x_{jk}
 \]

 \[
 \text{s.t.}\:
 \sum_{j=1}^{q} x_{jk} = 1 \quad k = 1, \ldots, q
 \]

 \[
 \sum_{k=1}^{S_j} x_{jk} = S_j \quad j = 1, \ldots, n
 \]

 \[x_{jk} \in \{0,1\} \quad \forall j, k\]

- Rewritten in this form, this problem looks like a transportation problem
 - Can use any standard procedure to solve or specialized algorithms like WHAP

Warehouse Layout Algorithm

- If probabilities of using the I/O points are independent of the product types, that is
 - \(p_i = p_j \) for all \(i \)

- Then we can use the following algorithm to minimize the total distance travelled
 - Number the products in non-increasing order of their \(T_j/S_j \) values

 \[
 \frac{T_1}{S_1} \geq \frac{T_2}{S_2} \geq \cdots \geq \frac{T_q}{S_q}
 \]

 - Compute the \(f_{jk} \) value for each storage location

 - Assign product 1 to the \(S_1 \) storage locations having the lowest \(f_{jk} \) values; assign product 2 to the \(S_2 \) locations having the next lowest \(f_{jk} \) values;...
Storage Models

- Determine best design for each storage subsystem
- Unit loads stored and retrieved with lift trucks
- Four conventional storage methods analyzed
 - Block stacking
 - Deep lane storage
 - Single-deep rack
 - Double-deep rack
- Tradeoff between density of storage and accessibility
 - Have different types of space losses due to rack design and honeycombing
 - Minimize average amount of floor space required