

Facility Layout

- Developing a facilities layout is a critical step in the facilities planning process.
- Facilities Planner must be CREATIVE and COMPREHENSIVE in generating layout alternatives.

Texas A&M INEN 416

Facility Layout

Handling less is BEST - Number of times material is handled Not necessarily the handling distance

Layout or MHS First ? -- BOTH

Sequential approach that considers a number of alternative handling systems and the corresponding layout alternatives.

Texas A&M INEN 416

Facility Layout

- Which comes FIRST, the material handling system or the facilities layout?
- Layout is effected by:
 - Centralized vs. Decentralized Storage of WIP, Tooling, & Supplies

 - Fixed Path vs. Variable Path Handling
 - Unit Load Size
 - Degree of Automation
 - Type and Level of Inventory and Control of Materials

Texas A&M INEN 416

Facility Layout

- Layout Types
 - Product layout
 - Group layout - Fixed layout
 - Process layout

Texas A&M

Layout Applications

- **Layout of Specific Functions**
 - Manufacturing
 - Receiving and Shipping
 - Storage and Warehousing
 - Office Planning
 - » Personnel requirements
 - » Make use of traditional layout approaches
 - » Often an emotional issue
 - Facility Services
 - » Specification of what services are required where
 - » Integration of the facility services into the overall facility plan
 - Nonmanufacturing Applications
- » Can adapt traditional techniques to these applications and apply a systematic approach Texas A&M INEN 416

Manufacturing Systems

- · Transfer Lines
 - Series material flow from one workstation to the
 - » Production rate governed by slowest operation
 - » High volume applications
 - » High level of automation
 - » Inventory buffers can be used between workstations to compensate for some variations between workstations
 - Facilities planning for transfer lines is relatively
 - » Processing equipment is arranged according to processing sequence
 - » Typically, straight line or rectangular flow paths are

Texas A&M INEN 416

Manufacturing

- Facilities Planning for manufacturing should be a major part of corporate strategic
- Emphasis on improved quality, decreased inventories, and increased productivity encourages the design of manufacturing facilities that are integrated, flexible, and controlled.

Texas A&M INEN 416

Manufacturing Systems

- · Flexible Manufacturing Systems
 - Network of workstations
 - Accommodates various processing sequences
 - Flexibility achieved by material handling system and general purpose machines
 - Designed for small batch (low to medium volume) and high variety
 - Justified on economies of scope
- Components
 - Processing equipment
 - Material handling equipment
 - Computer control equipment

Texas A&M

INEN 416

Manufacturing

- · Layout and Handling System affected by
 - Product mix and design
 - Processing and materials technology
 - Handling, storage, and control technology
 - Production volumes, schedules, and routings - Management philosophies

Classification Requirements Layout Type Job Shop Low Volume / High Variety Process or group Mass Production High Volume / Low Variety Product Batch Production Med. Volume / Med. Variety Any layout type

Texas A&M INEN 416

Flexible Manufacturing System

- Design requirements for an FMS material handling system:
 - Random, independent movement of palletized workparts between workstations. (AGVs, cart-ontrack system)
 - Temporary storage of workparts.
 - Convenient access for loading and unloading. - Compatible with computer control.

 - Provision for future expansion.
 - Adherence to all applicable industrial codes.
 - Access to machine tools.
 - Operation in shop environment.

Texas A&M **INEN 416**

Flexible Manufacturing System

- Designed for responsiveness to change; therefore, the FMS and the material handling system must be able to adapt to changes in
 - processing technology
 - processing sequences
 - production volumes
 - product sizes
 - product mixes

Texas A&M

Modular Design Concepts

- · Flexibility achieved by:
 - Modular office equipment
 - Modular workstations
 - Modular material handling equipment
 - General purpose production equipment
 - Expandability of the total system design

Texas A&M INEN 416

Modular Manufacturing System

INEN 416

- Integration of independent production units and modular material handling system.
- Designing modular, expandable systems is very challenging.
- Modular manufacturing system is characterized by
 - Standardized handling and storage components
 - Independent production units
 - Flexible material delivery system
 - Centralized work-in-process storage
 - High degree of control

Texas A&M INEN 416

Modular Facilities

- Use of an interconnecting spine for material transport and movement of people.
- Standard size modules to allow functions to be interchanged if relationships change.
- Expand by extending the spine and adding modules — creates minimal disruption to the existing facility.
- Alternative spine configurations: straight line, "T", or "X".

Texas A&M

Modular Design Concepts

- · Facility Relayouts can be caused by
 - Changes in the design of an existing product or in the product set to be produced.
 - Changes in the production sequences or in the processing equipment.
 - Changes in the production quantities and schedules, which prompt capacity changes.
 - Changes in organizational structure or management philosophy.
- Changes in requirements for space, equipment, and people.

Texas A&M INEN 416

Modular Material Handling

- Plan flexible, standardized systems for handling, storing, and controlling material within the facility.
 - Build in flexibility.
 - Standardize methods: unit loads, equipment, etc.
 - Integrate into a system as opposed to separate pieces serving only part of the facility.

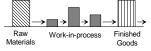
Texas A&M

INEN 416

INEN 416

INEN 416

Handling and Storing Work-In-Process


- - Centralized versus decentralized storage
 - Shop floor control and material tracking
 - Reduced WIP inventory levels
 - Controlled material movement to production areas
 - Reduced damage due to handling and storage
 - Automatic encoding of production data
 - "Just-in-time" production
 - Increasing levels of automation: CAE, CAD, CAM, MRP, RTIC, CAPP
 - Rapid tool changing for minimizing setups and reducing lot sizes

INEN 416 Texas A&M =

Handling and Storing WIP · Processing time versus WIP time Time on Machine Moving and Waiting Time on Machine Positioning, loading, gauging, idle, etc. In cut less than

Handling and Storing WIP

- In-process handling includes movement of material, tooling, and supplies to and from production units, as well as handling at the workstation.
- · In-process storage includes the storage of material, tooling, and supplies needed to support production. Typically, applies to material in a semifinished state of production.

INEN 416

Handling and Storing WIP

- Poor planning of WIP storage and control may result in these problems:
 - Materials are frequently lost

Texas A&M

- Materials are cannibalized from a different order
- Large inventory discrepancies exist and are only discovered at audits
- High material obsolescence costs
- Crowded, unorganized conditions on manufacturing floor
- Missed production schedules are the rule rather

Texas A&M **INEN 416**

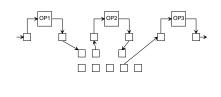
Handling and Storing WIP

- Rules of Thumb
 - Handling less is best
 - Maintain physical control of materials
 - Eliminate, combine, and simplify
 - Moving and/or storing material incurs costs.
 - Pre-position material
- · Design requirements for WIP handling system
 - Establish control requirements
 - Determine process flow methods
 - Establish inventory points and levels
 - Consider workplace layout
 - Determine load increment and container design
 - Evaluate WIP storage methods
 - Determine distribution method
- Design control system

INEN 416

Handling and Storing WIP

· Modular manufacturing and material handling techniques can aid WIP handling and storage.


Conventional Approach

changes, the facility layout must change Texas A&M

Centralized WIP Storage

- Provides the opportunity to use automated storage and retrieval
- Provides a controlled storage environment
- · Can aid in creating modular systems

Material Control

Types of control

Texas A&M

- Inventory control
- Shop floor control
- Quality controlLocation control
- Loss control
- Position controlFiscal control
- Material Tracking / Data Transmission
- From the material/equipment interface
- From the material itself

 » Bar Code

 » Optical Character Recognition

» Magnetic Stripe
» Smart Tag

Texas A&M

INEN 416

INEN 416

Conclusion

Depending on volume, variety, and value of products to be processed, different <u>levels of</u> <u>automation</u>, types of <u>layouts</u>, and <u>material</u> <u>handling systems</u> will be appropriate.