Order Picking

- A classical problem in warehousing and distribution is the order picking problem.
- Picking several different items to compose an order.
 - Could be a customer order, delivery for a retail store, kit for manufacturing or assembly, etc.
- Strategies
 - Part to picker
 » AS/RS; miniload; carousel
 » Use adaptation of previous unit load AS/RS analysis
 - Picker to part
 » Person-aboard system; floor level picking

Picker to Part Methods

- Single Order Picking
 - Must sequence orders and items within orders
- Multiple Order Picking (Batch Picking)
 - Single Picker per Order
 » Sort white pick
 » Pick then sort
 » Put everything into a large batch then sort
 - High volume
 - No order sequencing required
 - Multiple Pickers
 » Sequential picking
 » Container travels from zone to zone
 » Assembly line; bucket brigade
 » Simultaneous picking (Pick waves)
 » Each picker confined to a region of the warehouse
 » Batch of orders released to the warehouse
 » Each picker picks items from batch in their region
 » Items must be accumulated and sorted into orders

Order Picking Problems

- Batching
 - Group orders into pick lists
 - Based on priority or item similarity between orders
- Sequencing
 - Sequence items in the pick list
 - Based on item locations to minimize expected travel distance in picking tour (total pick time)
 - Picking tour is a specification of the sequence in which items in a specific order will be "picked"
 - This problem is prevalent where items must be picked from both sides of an aisle and the picker cannot reach items on both sides without changing position
 » Wide aisles are common to allow two-way traffic, turning around in the aisle, or product storage with fork lifts

Order Picking Tours

- Two Basic Problems
 - Within Aisle Sequencing
 - Between Aisle Sequencing
- Policies for Picking Within an Aisle
 - Traversal
 - Split Traversal
 - Return
 - Split Return
- Between Aisle Sequencing Problem
 - Similar to a traveling salesman problem
 - For high order density (>15% of the slots visited), there is little difference between the optimal tour and the all traversal tour.

Order Picking

- Traversal policy
 - "Z-pick" heuristic
 » Each slot is picked in a fixed sequence which remains the same for all orders.
 » "Best" Z-pick
 » $x^* = (W^2 + 1) / 2$
 - Optimal policy
 » Can be solved by finding the shortest path in an appropriately constructed network.